
Qubes OS: Security Through 
Isolation
1stLT Lukáa Czerner

Traditional desktop operating systems run everything together 3 if one 
app gets compromised, the whole system is at risk. There's no physical 
separation like we have in real life, where we naturally keep banking 
documents separate from gaming PCs.

Enter Qubes OS: a free, open-source security-oriented operating system 
that compartmentalizes your digital life using virtualization. It 
implements the core idea of isolating tasks in separate environments 3 
"Don't put all your eggs in one basket," or rather, one VM.

Edward Snowden calls it "the best OS available today" for security 3 a 
powerful endorsement that highlights why this matters for anyone 
concerned about digital privacy and protection.



About me

Software Engineer

Over 25 years of experience in 
programming. Senior Software Engineer 
with sizeable contributions to open-
source, the Linux kernel and core user-
space tools.

Linux Kernel

Worked as a maintainer of ext4 
filesystem, jbd2 layer and corresponding 
user-space tools at Red Hat. Contributor 
to filesystem, storage and memory 
management subsystems. Over a 
decade of system architecture 
experience.

MoD

Leading teams focused on cognitive 
security, infrastructure development, 
and operational support, while 
overseeing cybersecurity initiatives 
within a mission-driven organization.



Qubes OS Architecture Overview

AppVMs

Isolated environments for running applications

Service Qubes

Specialized VMs for network, USB, firewall, etc.

Dom0 (Admin Domain)

Privileged admin domain with no network access

Xen Hypervisor

Bare-metal foundation providing isolation

At the core sits the Xen hypervisor, a small layer of code running directly on hardware that allows multiple VMs to run 
concurrently. Dom0 is the privileged domain controlling all other qubes, while AppVMs run user applications in isolation. Service 
qubes handle specific functions like networking (sys-net), firewall (sys-firewall), and USB devices (sys-usb).



Deep Dive: Isolation Mechanisms

Xen based isolation

Virtual CPU, memory, disk and network interfaces. Hardware-enforced isolation accelerated via CPU extensions like 
EPT for VT-x and RVI for AMD-V, preventing one VM from accessing another's memory.

Device Isolation

Uses virtualization tech like VT-d or AMD-Vi for memory access protection, preventing compromised hardware 
from accessing other VMs

GUI Isolation

Windows from each qube display with colored borders, preventing spoofing between VMs

Clipboard Isolation

Two-step copy-paste process prevents silent data theft between VMs

Each qube has its own virtual hardware that Xen ensures remains isolated. Even the clipboard requires deliberate user action: 
when you hit Ctrl+Shift+C, you copy into a special buffer in Dom0, then switch VM and Ctrl+Shift+V to paste 3 preventing 
malware from silently stealing clipboard data.



Inter-Qube Communication: qrexec

Complete isolation is secure but impractical 3 qubes often need to communicate in limited ways. The qrexec framework 
provides secure RPC between qubes, always mediated by Dom0. When you click "Open in Disposable VM" on a PDF, it triggers a 
qrexec call through Dom0, which starts the disposable VM and tells it to launch a PDF viewer with that file.

Qrexec Request

VM initiates communication request

Dom0 Mediation

Request evaluated against policy

Policy Enforcement

Allow, deny, or prompt user

Secure Transfer

Data moves through controlled 
channel



Virtual Networking Architecture
Qubes OS implements a multi-layered virtual networking model that ensures true isolation while maintaining connectivity.

AppVM

Contains applications with a virtual NIC. No knowledge or access to physical interfaces.

sys-firewall (FirewallVM)

Filters traffic based on user-defined rules. Controls which qubes can access the network.

sys-net (NetVM)

Owns physical network interfaces. Marked untrusted due to exposure to external networks.

Internet

External networks remain separated from sensitive qubes by multiple isolation layers.

By default, qubes cannot communicate with each other through the network. Additional privacy options include Whonix 
integration for Tor routing.



Storage Architecture & LVM Thin Provisioning

VM Volume Layout

xvda (root), xvdb (private), xvdc (volatile), 
xvdd (modules)

Templates

Root image shared read-only via dm-thin snapshot

Thin Pool

On top of dm-crypt. Disk space allocated on-demand as data is written

Each qube has its own private storage using LVM thin provisioning, which allocates disk space only as needed. Instead of each 
AppVM having a full OS copy, they share a base template. Your AppVMs use the same OS image, with VM-specific changes 
stored in a Copy-on-Write layer on a separate volume.

When you boot an AppVM, Qubes combines the template's read-only root image with the VM's COW overlay. Updates happen in 
the TemplateVM, and all AppVMs using it get those updates on next boot. Any changes to system files go to a volatile overlay 
that vanishes at shutdown. Only user data in /home and /rw persists.



Real-World Use Cases & Scenarios

Developers

Separate coding environment 
from untrusted research. Test 
in disposable VMs. Contain 
vulnerabilities by isolating 
components.

Security Professionals

Analyze malware safely in 
disposable VMs. Create 
virtual lab environments. Use 
vault qubes for credentials 
and Split GPG for key 
protection.

Journalists

Protect sources with 
dedicated communication 
qubes. Use Tor/Whonix for 
anonymous submissions. 
Maintain offline reading 
qubes for sensitive 
documents.

Everyday Users

Separate important files from 
daily browsing. 
Compartmentalize projects 
and contexts with different 
qubes for work and personal 
use.

"Qubes lets me run WannaCry ransomware for analysis and not actually cry, which is a win in my book." For high-risk users, this 
compartmentalization can be life-saving, providing an air-gap alternative that's more convenient but still very secure.



Challenges and Learning 
Curve

Mental Adjustment

Users must learn to think in terms of qubes: "Which qube did I save 
that file in?" This requires habit changes and a new approach to 
computing.

Hardware Requirements

Qubes needs fairly beefy hardware with virtualization support, 
plenty of RAM, and fast SSD. Hardware compatibility can be picky 
with GPU and Wi-Fi drivers.

Performance Overhead

There is performance overhead compared to a single-OS 
environment. Video editing or gaming in Qubes is not ideal due to 
limited 3D acceleration support.

Security, with Caveats

Software is buggy, and QubesOS is no exception. Dom0 is your 
mission control. Once it9s breached, the rest of the system 
becomes occupied territory.

User Responsibility

You can still leak data through poor operational security. Qubes 
provides tools, but you must use them wisely 3 "A chain is only as 
strong as its weakest link."



Conclusion & Next Steps

Understand the Architecture

Qubes OS uses Xen virtualization to 
achieve strong isolation between 
tasks. Template based AppVMs run 
the applications, Service Qubes 
provide networking, USB devices and 
more, while Dom0 provides GUI, 
inter-qube communication and 
manages it all. "Security through 
Isolation" is the mantra.

Evaluate Your Needs

Consider if your security 
requirements justify the learning 
curve. For developers, researchers, 
journalists, and privacy-conscious 
users, Qubes provides peace of mind 
and flexibility that's hard to get 
otherwise.

Try It Out

https://www.qubes-os.org/

If your hardware allows, experiment 
with Qubes OS. The experience can 
improve your overall security 
mindset as you start thinking in 
compartments.

Qubes is a shining example of practical security 3 it's not just theory; people use it daily. With smart design, security and 
usability can coexist. As an open-source, community-driven project, contributions are welcome.

https://www.qubes-os.org/


Thank You!
Questions?

1stLT Lukáa Czerner


