Qubes OS: Security Through
Isolation

1stLT Lukas Czerner

Traditional desktop operating systems run everything together - if one
app gets compromised, the whole system is at risk. There's no physical
separation like we have in real life, where we naturally keep banking
documents separate from gaming PCs.

Enter Qubes OS: a free, open-source security-oriented operating system
that compartmentalizes your digital life using virtualization. It
implements the core idea of isolating tasks in separate environments -

"Don't put all your eggs in one basket," or rather, one VM.

<z Edward Snowden calls it "the best OS available today" for security - a
powerful endorsement that highlights why this matters for anyone
concerned about digital privacy and protection.

About me

Ol
10

Software Engineer

Over 25 years of experience in
programming. Senior Software Engineer
with sizeable contributions to open-
source, the Linux kernel and core user-
space tools.

14

Linux Kernel

Worked as a maintainer of ext4
filesystem, jbd2 layer and corresponding
user-space tools at Red Hat. Contributor
to filesystem, storage and memory
management subsystems. Over a
decade of system architecture
experience.

%
P

\Y/[e]D)

Leading teams focused on cognitive
security, infrastructure development,
and operational support, while
overseeing cybersecurity initiatives
within a mission-driven organization.

Qubes OS Architecture Overview

AppVMs
Isolated environments for running applications
Service Qubes
=
Specialized VMs for network, USB, firewall, etc.
DomO (Admin Domain)
Privileged admin domain with no network access
& Xen Hypervisor
Bare-metal foundation providing isolation

At the core sits the Xen hypervisor, a small layer of code running directly on hardware that allows multiple VMs to run
concurrently. DomO is the privileged domain controlling all other qubes, while AppVMs run user applications in isolation. Service
gubes handle specific functions like networking (sys-net), firewall (sys-firewall), and USB devices (sys-usb).

Deep Dive: Isolation Mechanisms

Xen based isolation

Virtual CPU, memory, disk and network interfaces. Hardware-enforced isolation accelerated via CPU extensions like
EPT for VT-x and RVI for AMD-V, preventing one VM from accessing another's memory.

Device Isolation

Uses virtualization tech like VT-d or AMD-Vi for memory access protection, preventing compromised hardware
from accessing other VMs

GUI Isolation

Windows from each qube display with colored borders, preventing spoofing between VMs

Clipboard Isolation

Two-step copy-paste process prevents silent data theft between VMs

Each qube has its own virtual hardware that Xen ensures remains isolated. Even the clipboard requires deliberate user action:
when you hit Ctrl+Shift+C, you copy into a special buffer in Dom0, then switch VM and Ctrl+Shift+V to paste - preventing
malware from silently stealing clipboard data.

Inter-Qube Communication: qrexec

Qrexec Request DomO Mediation

VM initiates communication request Request evaluated against policy

Secure Transfer Policy Enforcement

Data moves through controlled
Allow, deny, or prompt user

channel

Complete isolation is secure but impractical - qubes often need to communicate in limited ways. The grexec framework
provides secure RPC between qubes, always mediated by Dom0. When you click "Open in Disposable VM" on a PDF, it triggers a
grexec call through Dom0, which starts the disposable VM and tells it to launch a PDF viewer with that file.

Virtual Networking Architecture

Qubes OS implements a multi-layered virtual networking model that ensures true isolation while maintaining connectivity.

AppVM

Contains applications with a virtual NIC. No knowledge or access to physical interfaces.

sys-firewall (FirewallVM)

Filters traffic based on user-defined rules. Controls which qubes can access the network.

sys-net (NetVM)

Owns physical network interfaces. Marked untrusted due to exposure to external networks.

Internet

T T T

External networks remain separated from sensitive qubes by multiple isolation layers.

By default, qubes cannot communicate with each other through the network. Additional privacy options include Whonix

integration for Tor routing.

Storage Architecture & LVM Thin Provisioning

VM Volume Layout

xvda (root), xvdb (private), xvdc (volatile),
xvdd (modules)

Templates

Root image shared read-only via dm-thin snapshot

Thin Pool

On top of dm-crypt. Disk space allocated on-demand as data is written

Each qube has its own private storage using LVM thin provisioning, which allocates disk space only as needed. Instead of each
AppVM having a full OS copy, they share a base template. Your AppVMs use the same OS image, with VM-specific changes

stored in a Copy-on-Write layer on a separate volume.

When you boot an AppVM, Qubes combines the template's read-only root image with the VM's COW overlay. Updates happen in
the TemplateVM, and all AppVMs using it get those updates on next boot. Any changes to system files go to a volatile overlay

that vanishes at shutdown. Only user data in /home and /rw persists.

Real-World Use Cases & Scenarios

& 9, E (I

Developers Security Professionals Journalists Everyday Users
Separate coding environment Analyze malware safely in Protect sources with Separate important files from
from untrusted research. Test disposable VMs. Create dedicated communication daily browsing.
in disposable VMs. Contain virtual lab environments. Use qubes. Use Tor/Whonix for Compartmentalize projects
vulnerabilities by isolating vault qubes for credentials anonymous submissions. and contexts with different
components. and Split GPG for key Maintain offline reading qubes for work and personal

protection. qubes for sensitive use.

documents.

"Qubes lets me run WannaCry ransomware for analysis and not actually cry, which is a win in my book." For high-risk users, this
compartmentalization can be life-saving, providing an air-gap alternative that's more convenient but still very secure.

Challenges and Learning
Curve

Mental Adjustment

Users must learn to think in terms of qubes: "Which qube did | save
that file in?" This requires habit changes and a new approach to
computing.

Hardware Requirements

Qubes needs fairly beefy hardware with virtualization support,
plenty of RAM, and fast SSD. Hardware compatibility can be picky
with GPU and Wi-Fi drivers.

Performance Overhead

There is performance overhead compared to a single-OS
environment. Video editing or gaming in Qubes is not ideal due to
limited 3D acceleration support.

Security, with Caveats

Software is buggy, and QubesOS is no exception. Dom0 is your
mission control. Once it's breached, the rest of the system
becomes occupied territory.

User Responsibility

You can still leak data through poor operational security. Qubes
provides tools, but you must use them wisely - "A chain is only as
strong as its weakest link."

Conclusion & Next Steps

e
Try It Out

]
Evaluate Your Needs

. https://www.qubes-o0s.org/
Understand the Architecture P q g

Consider if your securit :
y Y If your hardware allows, experiment

ubes OS uses Xen virtualization to requirements justify the learnin . :
Q _ . _ G J y & with Qubes OS. The experience can
achieve strong isolation between curve. For developers, researchers, : :

. _ . _ improve your overall security
tasks. Template based AppVMs run journalists, and privacy-conscious) .
L : _ _ mindset as you start thinking in

the applications, Service Qubes users, Qubes provides peace of mind TR
provide networking, USB devices and and flexibility that's hard to get '
more, while Dom0 provides GUI, otherwise.

inter-qube communication and
manages it all. "Security through
Isolation" is the mantra.

Qubes is a shining example of practical security - it's not just theory; people use it daily. With smart design, security and
usability can coexist. As an open-source, community-driven project, contributions are welcome.

https://www.qubes-os.org/

Thank You! @'

Questions?

1stLT Lukas Czerner

