
Performance evaluation of Linux Discard
Support
(Overview, benchmark results, current status)

Red Hat

Lukáš Czerner

May 27, 2011

Copyright © 2011 Lukáš Czerner, Red Hat.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included
in the COPYING file.

Part I

Discard Background

Agenda

1 SSD Description

2 Thinly Provisioned Storage

3 Introducing Linux Discard Support

SSD Description

Solid-State Drive

Flash memory block device

Wear-leveling needed

Firmware = black box

SSD Description

ATA TRIM Command

Helps handle garbage collection overhead

Subsequent READ of TRIM’ed blocks

1 Read data should NOT change between READ’s
2 Read data should NOT be retrieved from data previously

written to any other LBA.

As long as the device has enough free pages to write to we do
not necessarily need it.

In a nutshell: TRIM command tells the device what LBA’a is
not used by the OS anymore.

Thinly Provisioned Storage

Thin Provisioning

Unlike in traditional storage, there is no fixed one-to-one
logical bock to physical storage mapping

More efficient use of storage space

Block reclamation interface needed

Thinly Provisioned Storage

SCSI UNMAP / WRITE SAME

Storage space reclamation interface

Subsequent READ of unmapped blocks

1 Read data should NOT change between READ’s
2 Read data should NOT be retrieved from data previously

written to any other LBA.

Unlike with SSD’s we can not afford to wait until we run out
of space for reclamation.

Introducing Linux Discard Support

Linux Discard Implementation

Abstraction for the two underlying specifications:

1 ATA TRIM Command
2 SCSI UNMAP / WRITE SAME

API for user-space

BLKDISCARD ioctl
Added with v2.6.27-rc9-30-gd30a260

API for File Sytems

1 sb issue discard()
2 blkdev issue discard()

Part II

Discard Performance

Agenda

4 Testing Methodology

5 Results

Testing Methodology

What do we need to find out ?

Does discard really work ? Is it reliable ?

How fast/slow is it ?

Is there any difference between devices from different vendors
?

What is the ideal discard size ?

SSD performance degradation

Testing Methodology

How do we test it ?

BLKDISCARD ioctl()

Automatic discard of different ranges

Different discard patterns

1 sequential performance
2 random IO peformance
3 discard already discarded blocks

test-discard - discard benchmarking tool

http://sourceforge.net/projects/test-discard/

impression - filesystem aging tool

Results

Sequential discard performance

 0

 50

 100

 150

 200

 250

 300

 10 100 1000
 0

 200

 400

 600

 800

 1000

 1200

D
ur

at
io

n
[s

]

T
hr

ou
gh

pu
t [

M
B

/s
]

Record size [kB]

Duration Summary
Throughput

Results

Different modes comparison

 0

 200

 400

 600

 800

 1000

 1200

 10 100 1000

T
hr

ou
gh

pu
t [

M
B

/s
]

Record size [kB]

Throughput (sequential)
Throughput (random IO)

Throughput (discard2)

Results

Difference between various vendors

 0

 200

 400

 600

 800

 1000

 1200

 10 100 1000

T
hr

ou
gh

pu
t [

M
B

/s
]

Record size [kB]

Throughput Vendor 1
Throughput Vendor 2
Throughput Vendor 3

Results

SSD performance degradation

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

W
rit

e
pe

rf
or

m
an

ce
 [M

B
/s

]

Filesystem saturation [%]

Vendor1
Vendor2
Vendor3

Vendor3 discard

Part III

Discard Support for Linux File systems

Agenda

6 Periodic Discard

7 Discard Batching

8 Different Approach

Periodic Discard

Periodic discard

Easy to implement

File system support

1 ext4 (v2.6.27-5185-g8a0aba7)
2 btrfs (since upstream)
3 gfs2 (v2.6.29-9-gf15ab56)
4 fat, swap, nilfs

mount -o discard /dev/sdc /mnt/test

TRIM is non-queueable command - implications ?

Periodic Discard

Benchmarking periodic discard

Expectations ?

Testing methodology

1 Metadata intensive load
2 Load with removing files
3 Reasonable file size distribution

Discard-kit

1 Using PostMark
2 http://sourceforge.net/projects/test-discard/files/

Periodic Discard

Ext4 performance (18% hit)

 100

 200

 300

 400

 500

 600

 700

 800

nodiscard discard

O
pe

ta
tio

n/
s

Deleted/s
Append/s

Read/s
Files-created/s
Transactions/s

Read[B/s]
Write[B/s]

Periodic Discard

Performance with various file systems

 350

 400

 450

 500

 550

 600

 650

 700

 750

nodiscard

discard

nodiscard

discard

nodiscard

discard

T
ra

ns
ac

tio
ns

/s

ext4

btrfs

gfs2

-63%-7%-18%

Discard Batching

Discard Batching - The idea

Fine-grained discard is not necessarily needed

Small extents are slow

With time, freed extents tends to coalesce

Disadvantages

1 There is a price for tracking freed extents
2 Discarding already discarded blocks should be easy, but...
3 Daemon (in-kernel, user-space) needed.
4 File system independent solution would most likely be pain to

do right (if possible).

Discard Batching

Batched discard support

File system specific solution

Provide ioctl() interface - FITRIM

Do not disturb other ongoing IO too much

1 Prevent allocations while trimming
2 How to handle huge filesystem ?

File system support

1 ext4 (v2.6.36-rc6-35-g7360d17)
2 ext3 (v2.6.37-11-g9c52749)
3 xfs (v2.6.37-rc4-63-ga46db60)

Discard Batching

FITRIM ioctl

Ioctl with one RW parameter defined in linux/fs.h
struct fstrim range {
u64 start;
u64 len;
u64 minlen;

}
fstrim tool

http://sourceforge.net/projects/fstrim/

util-linux-ng

Since v2.18-165-gd9e2d0d

Discard Batching

Batched discard benchmark results

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

D
ur

at
io

n
[s

]

Filesystem saturation [%]

FITRIM on ext4
BLKDISCARD

Different Approach

Alternative approach

It is always a compromise

The future of SSD’s and thinly provisioned LUN’s (???)

Part IV

Discard Support in user-space

Agenda

9 e2fsprogs

10 Other utilities

e2fsprogs

Discard in e2fsprogs tools

Using BLKDISCARD ioctl()

mke2fs

1 Refresh SSD’s garbage collector
2 discard zeroes data - significant speed boost
3 mkfs.ext4 -E discard /dev/sdc

e2fsck

1 After the last check discard free space
2 Non detected file system errors ? oops
3 fsck.ext4 -E discard /dev/sdc

resize2fs

1 Refresh SSD’s garbage collector
2 discard zeroes data - significant speed boost
3 resize2fs -E discard /dev/sdc

e2fsprogs

File system creation

 0

 5

 10

 15

 20

 25

 30

EXT4 XFS

D
ur

at
io

n
[s

]

File system

nodiscard
discard

Other utilities

Fstrim tool

Very simple tool to invoke FITRIM ioctl on mounted file
system

Stand-alone tool

http://sourceforge.net/projects/fstrim/

Since v2.18-165-gd9e2d0d part of util-linux-ng

Part V

Summary

Summary

Linux Discard support is a abstraction for underlying
specification

Exported via BLKDISCARD ioctl to user-space and
blkdev issue discard() for filesystems

Discard testing kit (Discard-kit)

1 test-discard
2 PostMark

Filesystem support

1 Fine grained (online) discard - mount -o discard
2 Batched discard support - fstrim from util-linux-ng

Support in user-space utilities

1 Filesystem creation (mkfs)
2 e2fsprogs - mkfs,e2fsck,resize2fs
3 xfsprogs - mkfs
4 fstrim

The end.
Thanks for listening.

Useful links

http://sourceforge.net/projects/fstrim/

http://sourceforge.net/projects/test-discard/

http://people.redhat.com/lczerner/discard/

	Discard Background
	SSD Description
	Thinly Provisioned Storage
	Introducing Linux Discard Support

	Discard Performance
	Testing Methodology
	Results

	Discard Support for Linux File systems
	Periodic Discard
	Discard Batching
	Different Approach

	Discard Support in user-space
	e2fsprogs
	Other utilities

	Summary

