
Local file systems update

Red Hat

Lukáš Czerner

February 23, 2013



Copyright © 2013 Lukáš Czerner, Red Hat.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included
in the COPYING file.



Agenda

1 Linux file systems overview

2 Challenges we’re facing today

3 Xfs

4 Ext4

5 Btrfs

6 Questions ?



Part I

Linux kernel file systems overview



File systems in Linux kernel

Linux kernel has a number of file systems
Cluster, network, local
Special purpose file systems
Virtual file systems

Close interaction with other Linux kernel subsystems
Memory Management
Block layer
VFS - virtual file system switch

Optional stackable device drivers
device mapper
mdraid



Applications (Processes)

direct I/O
(O_DIRECT)

VFS

Page
Cache

nvme

hooked in Device Drivers
(hook in similar like
stacked devices like

mdraid/device mapper do)

iomemory-vsl
with module option

LVM
Block I/O Layer

optional stackable devices on top
of “normal” block devices – work on bios

mdraid device
mapper

drbd ...

I/O Scheduler 

maps bios to requests

deadlinecfq noop

request-based
device mapper targets

dm-multipath

SCSI mid layer virtio_blk iomemory-vsl

Physical devices

HDD SSD DVD
drive

Micron
PCIe Card

Fusion-io
PCIe Card

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

...

anonymous pages
(malloc)

re
ad

(2
)

wr
ite

(2
)

op
en

(2
)

sta
t(2

)

ch
m

od
(2

)

...

BIOs (Block I/O)

sysfs
(transport attributes)

/dev/vd*

SCSI upper layer

/dev/sda .../dev/sdb
/dev/fio*

SCSI low layer
megaraid sas aacraid qla2xxx ...libata

ahci ata_piix ...

lpfc

Transport Classes
scsi_transport_fc

scsi_transport_sas

scsi_transport_...

lvm

/dev/fio*

/dev/nvme#n#

mtip32xx
/dev/rssd*

The Linux I/O Stack Diagram (version 0.1, 2012-03-06)
http://www.thomas-krenn.com/en/oss/linux-io-stack-diagram.html
Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/

block based FS
ext2 ext3

btrfs

ext4

xfs ifs

iso9660 ...

NFS coda

Network FS

gfs ocfs

smbfs ...

pseudo FS special
purpose FSproc sysfs

futexfs

usbfs ...

tmpfs ramfs

devtmpfs
pipefs

network

nvme
device

The Linux I/O Stack Diagram
version 0.1, 2012-03-06

outlines the Linux I/O stack as of Kernel version 3.3



Most active local file systems

File system Commits Developers Active developers
Ext4 648 112 13

Ext3 105 43 2

Xfs 650 61 8

Btrfs 1302 114 21



Number of lines of code

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

01/01/05

01/01/06

01/01/07

01/01/08

01/01/09

01/01/10

01/01/11

01/01/12

01/01/13

01/01/14

Li
ne

s 
of

 c
od

e

Ext3
Btrfs

Xfs
Ext4



Part II

Challenges we’re facing today



Scalability

Common hardware storage capacity increases
You can buy single 4TB drive for a reasonable price
Bigger file system and file size

Common hardware computing power and parallelism
increases

More processes/threads accessing the file system
Locking issues

I/O stack designed for high latency low IOPS
Problems solved in networking subsystem



Reliability

Scalability and Reliability are closely coupled problems

Being able to fix your file system
In reasonable time
With reasonable memory requirements

Detect errors before your application does
Metadata checksumming
Metadata should be self describing
Online file system scrub



New types of storage

Non-volatile memory
Wear levelling more-or-less solved in firmware
Block layer has it’s IOPS limitations
We can expect bigger erase blocks

Thinly provisioned storage
Lying to users to get more from expensive storage
Filesystems can throw away most of it’s locality optimization
Cut down performance
Device mapper dm-thinp target

Hierarchical storage
Hide inexpensive slow storage behind expensive fast storage
Performance depends on working set size
Improve performance
Device mapper dm-cache target, bcache



Maintainability issues

More file systems with different use cases
Multiple set of incompatible user space applications
Different set of features and defaults
Each file system have different management requirements

Requirements from different types of storage
SSD
Thin provisioning
Bigger sector sizes

Deeper storage technology stack
mdraid
device mapper
multipath

Having a centralized management tool is incredibly useful

Having a central source of information is a must

System Storage Manager http://storagemanager.sf.net



Part III

What’s new in xfs



Scalability improvements

Delayed logging
Impressive improvements in metadata modification
performance
Single threaded workload still slower then ext4, but not much
With more threads scales much better than ext4
On-disk format change

XFS scales well up to hundreds of terabytes
Allocation scalability
Free space indexing

Locking optimization

Pretty much the best choice for beefy configurations with lots
of storage



Reliability improvements

Metadata checksumming
CRC to detect errors
Metadata verification as it is written to or read from disk
On-disk format change

Future work
Reverse mapping allocation tree
Online transparent error correction
Online metadata scrub



Part IV

What’s new in ext4



Scalability improvements

Based on very old architecture
Free space tracked in bitmaps on disk
Static metadata positions
Limited size of allocation groups
Limited file size limit (16TB)
Advantages are resilient on-disk format and backwards and
forward compatibility

Some improvements with bigalloc feature
Group number of blocs into clusters
Cluster is now the smallest allocation unit
Trade-off between performance and space utilization efficiency

Extent status tree for tracking delayed extents
No longer need to scan page cache to find delalloc blocks

Scalability is very much limited by design, on-disk format and
backwards compatibility



Reliability improvements

Better memory utilization of user space tools
No longer stores whole bitmaps - converted to extents
Biggest advantage for e2fsck

Faster file system creation
Inode table initialization postponed to kernel
Huge time saver when creating bigger file systems

Metadata checksumming
CRC to detect errors
Not enabled by default



Part V

What’s new in btrfs



Getting stabilized

Performance improvements is not where the focus is
right now

Design specific performance problems
Optimization needed in future

Still under heavy development

Not all features are yet ready or even implemented

File system stabilization takes a long time



Reliability in btrfs

Userspace tools not in very good shape

Fsck utility still not fully finished

Neither kernel nor userspace handles errors gracefully

Very good design to build on

Metadata and data checksumming
Back reference
Online filesystem scrub



Resources

Linux Weekly News http://lwn.net

Kernel mailing lists http://vger.kernel.org

linux-fsdevel
linux-ext4
linux-btrfs
linux-xfs

Linux Kernel code http://kernel.org

Linux IO stack diagram
http://www.thomas-krenn.com/en/oss/linuxiostack-
diagram.html



The end.
Thanks for listening.


	Linux kernel file systems overview
	Challenges we're facing today
	What's new in xfs
	What's new in ext4
	What's new in btrfs

